Effect of Exercise Level on Clinical Presentation and CMVD Diagnoses in ANOCA/INOCA Patients

Authors: Audrey Baker; Swaathi Reddy; Silpa Masenini, MBBS; Kamryn Wilson, BS; Caitilin Ferrer; Jane Carnesi, BS; Claire Hanycz, BS; Evan Latika, BS; Danielle Tapp, PhD; Timothy D. Henry, MD; Odayme Quesada, MD

Introduction: Angina with Non-Obstructive Coronary Artery Disease (ANOCA) is a common an under diagnosed condition characterized by chronic and debilitating angina. Coronary Microvascular and Vasomotor Dysfunction (CMVD) is the underlying cause of ischemia and angina in these patients. Prior studies in ANOCA patients have found exercise capacity to be reduced in patients with worse anginal symptom onset. However, the relationship between exercise capacity, underlying CMVD in an ANOCA population in remains unknown.

Methods: Here, we utilized the prospective Women's Heart Center (WHC) registry to examine ANOCA patients undergoing Invasive Coronary Functional Testing (ICFT) for CMVD diagnosis between October 2020 and December 2024. The Duke Activity Status Index (DASI) was used to determine patient reported exercise capacity, DASI scores were separated into high capacity (>37) and low capacity (<37) in line with prior reports. High and low exercise capacity groups were compared on validated questionnaires including: University of San Diego Shortness of Breath (UCSD SOB), Rapid Eating Assessment (REAP), Duke Activity Status Index (DASI) and Perceived Stress Scale (PSS). Continuous measures of CMVD collected during ICFT were compared including change in Coronary Diameter (Change in CD) and Coronary Flow Reserve (CFR).

Results: The differences between high exercise capacity patients (DASI scores >37) and low exercise capacity patients are described in Table 1. Compared to low exercise capacity, patients with high exercise capacity had a lower prevalence of type 2 diabetes (1% vs 15%, P=0.003). Patients with lower exercise capacity had lower SAQ compared to high functioning patients, consistent with worse anginal symptoms (P<0.001, Table 1). Patients with high exercise capacity had higher UCSD SOB scores (Low=46.43, SD=23.73; high=27.81, SD=23.03, p=<.001) consistent with better shortness of breath. Overall DASI scores correlated with CFR, finding a weak, but significant correlation showing increased exercise capacity was associated with improved CFR. (Rho=.1881, 95% CI, p=.0112). Further, DASI and SAQ were correlated, finding a positive relationship between exercise capacity and symptoms (Rho=.372, p=<.001). There was no significant correlation between DASI and the PSS or REAP.

Conclusions: Low functioning patients demonstrated worse anginal symptoms, quality of life, and physical limitation as measured and demonstrated worse shortness of breath compared to high functioning patients. Further, there appears to be a protective effect of exercise capacity on underlying disease as measured by CFR, though this was a mild correlation. Further study is necessary to assess the relationship between functional capacity and anginal symptoms

Table 1:	DASI	DASI High	P-	
Demographics	Low	>37	Value	
and Clinical	<37			
Variables	,			
Demographics and Clinical Variables				
Age, Mean	59.91	51.16	<0.001	
(SD)	(12.16)	(11.50)		
Sex Female	87%	97%	0.057	
(%)				
Body Mass	31.55	31.07 (9.8)	0.673	
Index , Mean	(8.3)			
(SD)				
Hyperlipidemia	77%	77%	0.953	
(%)				
Type 2	15%	1%	0.003	
Diabetes (%)				
Heart Failure	8.25%	7.14%	0.740	
with Preserved				

Ejection					
Fraction (%)					
Validated Questionnaires					
SAQ7, Mean	31.24	42.20	<0.001		
(SD)	(22.0)	(17.09)			
PSS, Mean	14.29	13.54	0.356		
(SD)	(5.99)	(6.74)			
REAP, Mean	59.55	59.32	0.839		
(SD)	(9.504)	(8.42)			
DASI, Mean	24.16	48.43	<0.001		
(SD)	(8.213)	(6.673)			
UCSD SOB,	46.43	27.81	<0.001		
Mean (SD)	(23.74)	(23.03)			
ICFT Type	65%	69%	0.558		
Doppler (%)					
Continuous ICFT					
CFR, Mean	2.241	2.416	0.087		
(SD)	(0.7029)	(0.596)			
Change in CD,	-0.037	-0.029	0.663		
Mean (SD)	(0.129)	(0.126)			
CBF, Mean,	0.408	0.374	0.756		
(SD)	(0.569)	(0.497)			